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Point defects affect or even completely determine physical and chemical properties of semiconductors.

Characterization of point defects based on experimental techniques alone is often inconclusive. In

such cases, the combination of experiment and theory is crucial to gain understanding of the system

studied. In this tutorial, we explain how and when such comparison provides new understanding of the

defect physics. More specifically, we focus on processes that can be analyzed or understood in terms

of configuration coordinate diagrams of defects in their different charge states. These processes

include light absorption, luminescence, and nonradiative capture of charge carriers. Recent theoretical

developments to describe these processes are reviewed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4948245]

I. INTRODUCTION

Every material contains defects; perfect materials sim-

ply do not exist. While it may cost energy to create a defect,

configurational entropy renders it favorable to incorporate a

certain concentration of defects, since this lowers the free

energy of the system.1 Therefore, even in equilibrium, we

can expect defects to be present; kinetic limitations some-

times lead to formation of additional defects. Note that all

of these considerations also apply to impurities that are

unintentionally present in the growth or processing environ-

ment. Of course, impurities are often intentionally intro-

duced to tailor the properties of materials. Doping of

semiconductors with acceptors and donors is essential for

electronic and optoelectronic applications. In the following,

we will use the word “defect” as a generic term to cover

both intrinsic defects (vacancies, self-interstitials, and anti-

sites) and impurities.

Since defects are unavoidable, we must consider the

effects they have on the properties of materials. These effects

can be considerable, to the point of determining the function-

ality of the material, as in p- or n-type doping. Point defects

play a key role in diffusion: virtually all diffusion processes

are assisted by point defects. Defects are often responsible

for degradation of a device. Even in the absence of degrada-

tion, defects can limit the performance of a device.

Compensation by native point defects can decrease the level

of doping that can be achieved. Defects with energy levels

within the band gap can act as recombination centers, imped-

ing carrier collection in a solar cell or light emission from a

light-emitting diode. Sometimes, these effects can be used to

advantage: luminescence centers in wide-band-gap materials

can be used to emit light at specified wavelengths; or single-

spin centers (such as the nitrogen–vacancy (NV) center in di-

amond) can act as an artificial atom and serve as a qubit in a

quantum information system.2,3 Finally, sometimes, one

deliberately wants to grow materials with many defects.

Examples are materials for ultrafast optoelectronic switches

or semiconductors used to optically generate THz pulses,

where defect densities should be large enough so that carrier

lifetimes are as short as a few picoseconds.4

All of these scenarios require control over the defect pop-

ulation. Such control, in turn, requires accurate knowledge of

the mechanisms by which defects incorporate and affect mate-

rials properties. Over the past 60 years, tremendous progress

has been made in the experimental and theoretical characteri-

zation of defects in semiconductors—much of it documented

in the proceedings of the biennial International Conference on

Defects in Semiconductors (ICDS). The first such conference

was held in 1959, Gatlinburg, TN, USA, chaired by Cleland.5

Starting in the 1970s, computational studies, in combination

with experimental efforts, have yielded new perspectives and

quantitative detail about the impact of defects.

The present tutorial is not intended as a comprehensive

review of the theoretical foundations or computational

approaches; these have been documented in a number of

review papers,6–8 a series of articles,9 and books.10,11

Books that cover experimental aspects include Lannoo and

Bourgoin,12 Pantelides,13 Stavola,14 Spaeth and Overhof,15

and McCluskey and Haller.16 In the present tutorial, we aim

to focus on specific areas where theory/computation and

experiment have converged to provide unprecedented

insight into the physical mechanisms that govern defect

behavior. The ability to directly compare theoretical results

with experimental measurements is essential for validation

of the computational approach. In addition, it empowers

theory to help interpret and explain experimental observa-

tions and ultimately to reliably predict structures and prop-

erties that can subsequently be experimentally implemented

and observed.

The paper is structured as follows. Section II gives a gen-

eral background on defect levels, first-principles calculations,
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and experimental methods. Section III discusses configuration

coordinate diagrams, which are important for describing deep-

level defects. Section IV presents specific case studies.

Conclusions and general observations are presented in Sec. V.

Finally, an Appendix discusses the validity of the one-

dimensional configuration coordinate diagram.

II. BACKGROUND

A. Defect levels and wavefunctions

This tutorial focuses on electrically active defects.

These are defects that can exist in different charge states. For

example, single acceptors can exist in either a negatively

charged or neutral state. Single donors exist in either the pos-

itively charged or neutral state. Other defects can exhibit

more complexity. Substitutional gold in silicon, for example,

can be negative, neutral, or positive. Defects that can act

both as donors and acceptors are called amphoteric.

Electrically active defects have at least one defect level (or

transition level) in the band gap, somewhere between the

valence-band maximum (VBM) and conduction-band mini-

mum (CBM). This level has an associated defect wavefunc-

tion, a state to which the electron is added or removed when

the charge state of the defect changes.

If a transition level is positioned such that the defect is

likely to be thermally ionized at room temperature, it is con-

ventionally referred to as a shallow level. Otherwise, it is

called a deep level. An alternative definition is based on the

degree of localization of the wave function of an electron (or

hole) associated with the defect. A delocalized wave func-

tion (on the order of many lattice constants) is the character-

istic of a shallow level, while a wave function localized on a

length scale of an atomic bond indicates a deep level. A

more detailed discussion of shallow levels can be found in

Sec. II D 2 of Ref. 6.

B. First-principles calculations

As in so many areas of solid-state physics, density func-

tional theory (DFT)17,18 has emerged as the most powerful

approach for assessing the properties of defects. DFT calcu-

lations, typically carried out in a supercell geometry,6 yield

reliable information about atomic structure, including all

relaxations of the host atoms. Electronic structure proved to

be a greater challenge. Traditional functionals, such as the

still widely used local density approximation (LDA) and

generalized gradient approximation (GGA), severely under-

estimate band gaps of semiconductors and insulators, and

therefore the position of defect levels suffers from large

uncertainties. This can be addressed by going beyond DFT,

for instance using many-body perturbation theory (typically

in the GW approach),19 but this tends to be computationally

expensive and difficult to execute in a self-consistent fash-

ion. It is usually applied to address only the electronic struc-

ture, based on atomic structures obtained from DFT.20,21

In recent years, hybrid functionals22 have offered a

powerful way to overcome these limitations: not only do

they produce band structures in much better agreement with

experiment, but they also provide a much more reliable

description of charge localization, which is essential for

accurate modeling of low-symmetry defects or structures

that give rise to polaron formation.23,24 In particular, the

screened hybrid functional of Heyd, Scuseria, and Ernzerhof

(HSE)25 has proven reliable to predict formation energies

and transition levels of native defects and impurities.26–30

Another important advance has been the ability to cor-

rect for errors that arise from the use of supercells to describe

charged defects. While these supercells can typically be

made large enough to minimize interactions between a neu-

tral defect and its mirror images, the long range of the

Coulomb interaction renders this essentially impossible in

the case of charged defects. Explicit correction schemes are

therefore essential, and a supercell-size correction scheme

based on the rigorous treatment of electrostatics was

described in Refs. 31 and 32.

C. Experimental techniques

In this section, we give a brief overview of experimental

techniques that are most common and most useful for study-

ing defects.

1. Secondary ion mass spectrometry (SIMS)

SIMS allows accurate measurement of impurity concen-

trations as a function of depth. The detection limit can be as

low as 1013 cm�3,33 but it depends on the type of impurity.

Impurities that are commonly found in the environment,

such as nitrogen or carbon, are most difficult to detect in low

concentrations.34 SIMS is not suitable for determining

intrinsic-defect concentrations: finding the needle in the hay-

stack is hard enough—finding any missing or additional hay

is essentially impossible. A notable exception is when iso-

topes are used, a very powerful approach for studying self-

diffusion.35

2. Positron annihilation spectroscopy (PAS)

PAS identifies point defects by measuring the annihila-

tion of positrons with electrons.36 It is most powerful for

detection of neutral or negative vacancies, which can trap

positrons efficiently. The increased lifetime of the trapped

positron provides a signature for the defect. In addition, the

momentum distribution of the emitted gamma rays provides

information about the local environment.

3. X-ray measurements

X-ray diffraction can measure lattice parameters with

high accuracy and can sometimes be used to assess impurity-

induced changes of the atomic structure.37,38 Extended X-ray

absorption fine structure (EXAFS)39 produces details about

atomic structure and bond lengths around an impurity, but

only in the case of impurities with relatively heavy mass.

4. Electron paramagnetic resonance (EPR)

EPR is an excellent tool that can provide detailed infor-

mation about concentrations, chemical identity, symmetry,

and lattice environment of defects or impurities.40 Measured
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hyperfine parameters can be directly compared with values

based on wave functions obtained from first-principles calcu-

lations, thus allowing an explicit identification of the micro-

scopic structure.41 Since EPR relies on the presence of

unpaired electrons, sometimes optical excitation is necessary

to generate a metastable charge state with a nonzero spin

density. Optically detected magnetic resonance (ODMR) is a

variant of the technique that offers additional information

about the defect-induced levels.42

5. Electrical measurements

Hall-effect measurements provide details about carrier

concentrations, concentrations of compensating defects, and

mobility. The identity of the electrically active and scattering

centers must be inferred from other measurements. Deep

level transient spectroscopy (DLTS)43 is a powerful tech-

nique to observe defect levels in the band gap, under condi-

tions where the final charge state can fully relax to its

equilibrium configuration after the transition. These meas-

urements should therefore be compared with thermodynamic

transition levels, as discussed in Sec. III.

6. Vibrational spectroscopy

The presence of a defect modifies the vibrational spec-

trum of the solid, often leading to local vibrational modes

(LVMs) that are detected with Raman spectroscopy or

Fourier-transform infrared spectroscopy.44 These modes can

be calculated with first-principles calculations,45,46 greatly

aiding in identifying the nature and local structure of the

defect.

7. Optical measurements

In a photoluminescence (PL) experiment, above-gap

light excites electrons from the valence band to the conduc-

tion band (CB).47 In addition, electrons can be excited from

or to defect levels. When the excited electrons transition to

lower energy levels, they can emit light to conserve energy,

resulting in a peak in the PL spectrum. In a photolumines-

cence excitation (PLE) experiment, the PL intensity is meas-

ured as a function of excitation photon energy. This gives an

absorption profile for the defect. While these techniques

yield optical signatures of defects with high resolution,48

they cannot by themselves identify their nature or character.

Comparison with first-principles calculations can be particu-

larly powerful here.

III. CONFIGURATION COORDINATE DIAGRAMS

Defect physics is almost as complex as solid-state

physics itself. In studying defects, one is faced with the same

variety of different phenomena as for solids in general: elec-

tronic and nuclear magnetism, thermodynamics, optical

properties, mechanical properties, transport, etc. In this tuto-

rial, we focus on one specific but very important aspect of

defect physics: the coupling of electronic and atomic struc-

ture. This is best described in terms of configuration coordi-
nate diagrams, defined below. On the one hand, analysis of

experimental results in terms of these diagrams provides a

lot of insight about defects. On the other hand, first-

principles calculations comprise a tool that can directly pro-

vide such information. Thus, in this regard, the comparison

between experiment and theory is a very powerful combina-

tion to study defects.

A. Definition

As discussed in Sec. II A, the wavefunction of a defect

can be either delocalized or localized. If it is delocalized,

then the electron density is very low at the defect and does

not exert much influence on the atomic positions. This is the

case for shallow defects. If the wavefunction is localized (on

the defect itself and/or a few neighboring atoms), then this

has a strong effect on how the atoms rearrange themselves

locally when the charge of the defect changes or, more gen-

erally, when the electronic state of the defect changes. We

will focus on the properties of deep, localized defects.

The change of the defect geometry associated with the

change of its electronic state is best described by a configura-

tion coordinate diagram.16,49 For simplicity, consider a dia-

tomic model, where an impurity atom attaches to a host atom.

We will look at the case where the defect is an acceptor.

When the Fermi level is at the CBM, the defect’s electronic

ground state is negative (�) and its excited state is neutral (0).

The defect is described by a configuration coordinate

(cc) Q, which in this simple picture is proportional to the

bond length. At equilibrium, the energy E is minimized at a

specific value of Q. To first order, the bond behaves like a

harmonic spring, so E�Q2. Consider the defect in its ground

state (i.e., the negatively charged state; see Fig. 1). During

absorption, an incoming photon can excite the electron into

the CB, thus neutralizing the acceptor. In the classical

Franck-Condon approximation,49–52 this optical transition

occurs instantaneously: the ions are slow, and so their posi-

tion does not change when the electronic state changes. This

gives us the classical absorption energy Eabs, shown in Fig.

1. Because the defect has lost an electron, the bond strength

is different and the bond length has a new equilibrium Q
value. It relaxes to this new equilibrium, losing energy in the

process. The amount of energy lost is the Franck-Condon
shift, de

FC (Fig. 1). If the energy separation between the equi-

librium configurations in the ground and the excited state is

Etherm, then

FIG. 1. Configuration coordinate diagram, showing important energies and

optical transitions. For this example, Etherm gives the acceptor level relative

to the CBM.
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Eabs ¼ Etherm þ de
FC; (1)

where Etherm is the thermal energy of the transition: it is the

energy difference between the ground state and the excited

state in their equilibrium configurations. An alternative term

often used is the zero phonon line (ZPL) energy, EZPL.

Once in the excited state, the acceptor can recapture the

electron, often emitting a photon. This is the luminescence,

or light emission, process. Within the same classical Franck-

Condon approximation, such a transition occurs for a fixed

nuclear configuration, and its energy is Eem (Fig. 1). Finally,

the system relaxes to its ground-state equilibrium, losing

more energy. The energy lost in the ground state is dg
FC.

Because of relaxations in the excited state and the

ground state, the emission energy is lower than the absorp-

tion energy. The total energy difference between absorption

and emission is called the Stokes shift. We see that the

Stokes shift is given by the sum of Franck-Condon shifts in

the ground and excited state

Eabs � Eem ¼ de
FC þ dg

FC: (2)

The classical Franck-Condon approximation is often suf-

ficient to interpret optical experiments. For example, it can be

used to understand the distinction between electrical and opti-

cal properties of the same defect.6,16 However, one can go

beyond this approximation by including the vibrational broad-

ening of the transitions,50–52 both in absorption and emission.

This concept is best illustrated using the same cc diagram

(Fig. 1), taking into account the vibrational sub-levels.

It is possible to define an effective vibrational frequency

that is representative of exactly the same atomic motion that

is “encoded” in our configuration coordinate Q. In the sim-

ple case of the diatomic molecule discussed above, this will

simply be linear vibrations of the molecule. Let these fre-

quencies be xg and xe for the ground and the excited state.

If the curvatures of the two parabolas are identical, we will

then use the symbol x0 to represent this frequency. Going

beyond the classical Franck-Condon approximation, we now

have to consider transitions between vibronic levels of

defects, as explained in Sec. III B. A very important

parameter in discussing the vibrational broadening is the so-

called Huang-Rhys factor S.53 In the case of equal vibra-

tional frequencies in the ground and the excited state, it is

given by

S ¼ dFC

�hx0

: (3)

The Huang-Rhys factor S essentially quantifies the number

of phonons emitted during optical transition, either absorp-

tion or emission.

Often the real motion of the atoms around the defect

associated with the change of the electronic state is more com-

plex than the model discussed above. For example, when the

charge of the Mg acceptor in GaN changes from 0 to �1 or

vice versa, this mostly involves a change of the geometry of

five atoms:54,55 the Mg atom itself, one out of four nitrogen

atoms that are nearest neighbors to Mg, as well as three Ga

atoms that are bonded to this N atom. The configuration

coordinate then describes the collective motion of atoms that

captures the essential physics of the process. It might be sur-

prising that this one-dimensional approximation to what is

essentially a multi-dimensional problem (where the dimen-

sionality is 3N, N being the number of atoms in the system) is

sufficient. The beauty of 1D cc diagrams is that often they are
sufficient.51 As discussed in the Appendix, this is particularly the

case for defects with strong electron–phonon coupling. In certain

cases, the validity of this approximation can be demonstrated rig-

orously; we discuss one such example in the Appendix.

B. Emission and absorption

In this section, we discuss absorption and emission proc-

esses more quantitatively, focusing in particular on the

energy dependence of absorption cross-sections and lumines-

cence lineshapes. As above, let us consider optical processes

that involve a single acceptor. Optical absorption is the pro-

cess that can be described via

A� þ h� ! A0 þ e�; (4)

while luminescence is given by

A0 þ e� ! A� þ h�: (5)

After optical absorption, the electron ends up in a continuum

of CB states, even at low temperatures. In the case of emis-

sion at low temperatures, both the initial and the final elec-

tronic state of the electron can be described by single

electronic states. Because of this, we start our discussion

with luminescence, because it is conceptually a simpler

process.

Emission: To describe the vibrational broadening of

emission, we have to sum up all possible transitions between

the vibrational levels in the excited state and those in the

ground state. Within the 1D model, the normalized lumines-

cence lineshape is given by49

Lð�hx;TÞ¼
X
n;m

wmðTÞjhvemjvgnij2dðEZPLþm�hxe�n�hxg��hxÞ:

(6)

The sum runs over all vibrational levels in the excited state

(m) and the ground state (n). wmðTÞ is the thermal occupation

factor. In principle, at low temperatures (m¼ 0), Eq. (6)

describes a series of equidistant peaks: the emission of a pho-

ton without any phonons (n¼ 0) is the ZPL, while the n¼ 1,

2, 3… peaks are referred to as phonon replicas.

In practice, especially for defects with large Huang-

Rhys factors (S� 1), these phonon replicas are not

observed, for reasons described in the Appendix. In calcula-

tions, the Dirac delta functions d(�hx) (which reflect energy

conservation) can be replaced by functions of finite width

(e.g., Gaussian functions). Equation (6) corresponds to the

quantum variant of the Franck-Condon approximation,

which assumes that the transition dipole moment that

describes the coupling between the excited state and the

ground state does not depend on Q. hvemjvgni are Franck-
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Condon overlap integrals between vibrational levels in the

ground and the excited state. When xe ¼ xg and m ¼ 0,

these integrals have a simple analytical expression48

jhve0jvgnij2 ¼ e�S Sn

n!
; (7)

where S is the Huang-Rhys factor. At temperatures much

higher than �hxe=kB, the lineshape Lð�hx; TÞ becomes

Gaussian-shaped with a full width at half maximum W

W Tð Þ ¼ W0coth
�hxe

kBT

� �
; (8)

where kB is the Boltzmann constant. A general expression

for W0, valid when xe 6¼ xg, is given in Refs. 56 and 57.

When xe ¼ xg ¼ x0,

W0 ¼ �hx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2 S
p

� 2:355�hx0S1=2: (9)

Thus, measuring the temperature-dependent broadening of

defect luminescence bands, one can directly measure both

the vibrational frequencies [Eq. (8)] and the Huang-Rhys

factors [Eq. (9)]. While the general theory that we discussed

above was known for many years (e.g., Refs. 50 and 51), an

important point is that it is now possible to calculate all the

relevant parameters that enter into the description completely

from first principles.20,55,58–60 Examples of this are given in

Sec. IV.

Absorption: The theory behind the lineshape of optical

absorption follows a similar logic as for emission. However,

one has to include the sum over final electronic states that

represent the electron in the conduction band. Various mod-

els have been developed to simulate the shape of the absorp-

tion onset.61 Following the treatment by Kopylov and

Pikhtin,62 the absorption cross section r is given by

r �hxð Þ /
ð1

0

e� EþEabs��hxð Þ2=C2 ffiffiffi
E
p

dE

�hx Eþ Eabsð Þ2
; (10)

where �hx is the photon energy and C is a broadening param-

eter. In the limit of no vibrational broadening (C¼ 0), Eq.

(10) reduces to

r �hx;C ¼ 0ð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hx� Eabs

p

�hxð Þ3
: (11)

This absorption profile has a sharp onset at �hx¼Eabs. As C
increases, the onset spreads out (Fig. 2).

The broadening parameter depends on the Franck-

Condon shift (dFC), ground state vibrational frequency (xg),

and excited state vibrational frequency (xe). At absolute

zero temperature,

C0 ¼
xg

xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dFC�hxg

p
: (12)

When xe ¼ xg ¼ x0, this simplifies to

C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dFC�hx0

p
� 1:414�hx0S1=2: (13)

Note that this equation is essentially the same as Eq. (9), just

written for the Gaussian broadening parameter that appears

in Eq. (10) rather than the width of the Gaussian function. As

the temperature T is raised, the higher vibrational states of

the electronic ground state become populated, leading to

more broadening. Similar to Eq. (8), the temperature-

dependent broadening is given by

C ¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cothð�hx0=kBTÞ

p
: (14)

This temperature dependence is valuable because it allows

one to determine x0 experimentally.

C. Nonradiative capture of charge carriers

In addition to radiative transitions discussed in Sec.

III B, cc diagrams are also important to understand nonradia-

tive capture of carriers. Here, we will focus only on transi-

tions that occur via the mechanism of multiphonon emission

(MPE).

The theory of MPE has a rich history. In the context of

defects, it was first suggested by Huang and Rhys in the

1950s53 and was subsequently developed by Gummel and

Lax,63 Kubo and Toyozawa,64 Henry and Lang,65 and others.

The nonradiative transition rate is usually calculated within

first-order perturbation theory. First-principles calculations

of nonradiative capture coefficients have appeared only in

recent years.66–69 References 67 and 69 in particular, provide

a historical overview of the developments in the theory.

A 1D cc diagram pertaining to a nonradiative capture

process is shown in Fig. 3. The example illustrates a capture

of a hole by a negatively charged acceptor. In contrast to

absorption or luminescence discussed previously (Fig. 1),

now the excited state corresponds to the negative charge

state, while the electronic ground state corresponds to the

neutral charge state. This happens because for this particular

process, we study the exchange of charge with the valence

band rather than the conduction band. The energy difference

between the two states is DE, and the two potential energy

curves are offset horizontally by DQ. This results in a

FIG. 2. Absorption profile for a deep-level acceptor with Eabs¼ 2.26 eV,

according to Eq. (10). Broadening parameters (C) are in units of eV.
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Franck-Condon shift dg
FC, equivalent to the Franck-Condon

shift for optical transitions. DEb is the classical barrier for a

transition from the upper curve to the lower potential energy

curve, determined as the difference between the intersection

point of the two curves and the minimum energy of the

excited state. If the curvatures of the two parabolas are equal

(dg
FC ¼ de

FC ¼ dFC), the classical barrier is given by

DEb ¼
DE� dFCð Þ2

4dFC
: (15)

The process of MPE is possible only when the potential

energy curves of the ground and the excited are offset, i.e.,

when there is a nonzero Franck-Condon shift dFC. If dFC

were 0, the phonon selection rules Dm ¼ 61 (m is phonon

quantum number) would allow only transitions where one

phonon is emitted or absorbed. Since maximum phonon

energies in wide-band-gap semiconductors are of the order

of 0.1 eV, such mechanisms would not be important for deep

centers. It is exactly this offset of the potential energy surfa-

ces, and thus the breaking of the strict phonon selection rule,

that enables nonradiative transitions, whereby energies much

larger than phonon energies can be dissipated (hence the

term “multiphonon emission”).

Nonradiative carrier capture via MPE occurs in two

steps. The first step represents the capture of a carrier from a

delocalized bulk-like state to a localized defect state,

whereby the electronic energy is conserved, but the system

ends up in a vibrationally excited state. In the cc picture, this

could be represented by a horizontal transition between the

two potential energy curves (Fig. 3). In the second step, the

vibrationally excited state returns to local equilibrium via

phonon relaxation. The second process is much faster than

the first one. Therefore, the rate-limiting step for MPE is the

electronic transition.

Taking holes as our example, the nonradiative capture

rate Rp per unit volume per unit time is given by

Rp ¼ CpN�p: (16)

Here, Cp is the capture coefficient, N� is the concentration

of defects in the negative charge state, and p is the hole den-

sity. The quantum-mechanical expression for Cp can be

found, for example, in Ref. 65 [Eq. (13)] or Ref. 67 [Eq.

(22)].

To see how the parameters of the 1D cc diagram affect

nonradiative transitions (or how these parameters can be

determined from experimental measurements), let us con-

sider a model defect with these parameters: DE ¼ 0:80 eV,

dFC ¼ 0:243 eV, �hx0 ¼ 30 meV, S ¼ 8:1 (cf. Fig. 3). From

Eq. (15), this yields DEb ¼ 0:32 eV. In Fig. 4, we show a

calculated nonradiative capture coefficient (solid line) as a

function of temperature. The magnitude of the capture coef-

ficient is proportional to the square of the electron-phonon

coupling matrix element.

At very low temperatures, the capture coefficient reaches

a constant value. This represents quantum-mechanical tunnel-

ing between the two potential energy curves. At higher tem-

peratures, the capture coefficient increases, revealing that

there is an activation energy for the transition. If we fit the

high-temperature limit to a function C1 expð�DE0b=kBTÞ, we

obtain E0b ¼ 0:24 eV. An even better approach [cf. Eq. (28) of

Ref. 65] is to fit to a function C2 expð�DE00b=kBTÞ=
ffiffiffi
T
p

, which

presents a correct analytical limit to the capture coefficient for

kBT � �hx0. In this case, we obtain DE00b ¼ 0:30 eV, much

closer to the classical barrier DEb ¼ 0:32 eV. Henry and

Lang65 showed that in the limit of very large Huang-Rhys fac-

tors S and high temperatures, the latter fit yields exactly the

classical barrier DEb. Thus, we come to the conclusion that

measurements of temperature-dependent capture coefficients

provide a means to measure DEb. If, at the same time, the

energy difference DE (which is the acceptor ionization energy

in our case) is known or is measured separately, one can

determine dFC as per Eq. (15). Therefore, this allows us to

construct the 1D cc diagram for this process, as in the case of

radiative transitions.

We note that the discussion based on the cc picture is

analogous to the Marcus theory of electron transfer, often

used to describe nonradiative processes in liquids, molecular

crystals, etc.70 The cc picture is similarly useful to study

nonradiative intra-defect transitions, i.e., there is a transition

between different forms of the defect in the same charge

state.
FIG. 3. Configuration coordinate diagram illustrating nonradiative capture

of a hole by a deep acceptor (A).

FIG. 4. Nonradiative capture coefficient at a model defect system. Solid

line: quantum-mechanical calculation based on 1D cc diagram. Dashed line:

high-temperature limit showing temperature-activated nature of the process.
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IV. EXAMPLES

A. Nitrogen in ZnO

While ZnO has potential for a range of optoelectronic

application, the problem of p-type doping remains a major

challenge. Substitutional nitrogen (NO) was once thought to

be a shallow acceptor that could lead to p-type ZnO.71 DFT

calculations using hybrid72 and so-called Koopmans-cor-

rected functionals73 challenged that view, showing the

acceptor level to be 1.3–1.6 eV above the VBM. Motivated

by the theoretical work, experiments were performed on

bulk ZnO:N crystals.74 These crystals were n-type, so the

nitrogen acceptors were negatively charged (NO
�) at thermal

equilibrium. By constructing a cc diagram, theory and

experiment joined forces to show that NO is, in fact, a deep

acceptor.

Room-temperature PL measurements on ZnO:N showed

a “red” luminescence band,74 centered at 1.7 eV, in good

agreement with the prediction of Ref. 72. To obtain an

absorption profile, PLE experiments were performed, where

the intensity of red luminescence was recorded versus excita-

tion photon energy (Fig. 5). When the photon energy is

above the threshold, it excites an electron from NO
� to the

CB. The electron is then recaptured by NO
0, resulting in red

emission.

The PLE spectrum was fit using Eq. (10). At 10 K, the

model parameters are Eabs¼ 2.26 eV and C0¼ 0.14 eV. At

300 K, the parameters are Eabs¼ 2.24 eV and C¼ 0.18 eV.

The increase in vibrational broadening allows us to estimate

the ground-state vibrational frequency. From Eq. (14), we

obtain �hx0¼ 35 meV. This value is in good agreement with

the calculations of Ref. 55, namely, �hxg¼ 40 meV.

To simplify the modeling, we assume the ground and

excited vibrational frequencies are the same, xe¼xg. With

this approximation, we can use Eq. (12) to solve for the

Franck-Condon shift

dFC ¼ C0
2=ð2�hx0Þ: (17)

Equation (17) yields dFC¼ 0.28 eV. From Eq. (1), the ther-

modynamic energy at 10 K is Etherm¼ 2.26–0.28¼ 1.98 eV.

Therefore, the (0/–) acceptor level lies 1.98 eV below the

CBM. Since the low-temperature band gap of ZnO is

3.44 eV, the acceptor level is 1.46 eV above the VBM.

It is instructive to compare this experimentally derived

acceptor level, 1.46 eV, with theories that produce the correct

ZnO band gap. Theories using the HSE functional give an

acceptor level of 1.3 eV,72,75 which increases to 1.46 eV when

a correction for the finite supercell is applied.75 Quantum

Monte Carlo simulations give an energy of 1.6(3) eV.76 On

the experimental side, photo-EPR measurements on ZnO:N

indicate the acceptor level to be �1.6 eV above the VBM.77,78

In summary, there is strong consensus that the NO acceptor

level is 1.3–1.6 eV above the VBM. Such a deep level cannot

contribute a significant density of holes at room temperature,

and hence it can be firmly concluded that nitrogen is not a

shallow acceptor in ZnO.

B. DX centers

A DX center is a donor impurity that relaxes away from

its substitutional site, becoming a deep-level defect.61,79 The

most-studied system is Si in AlxGa1�xAs. For AlxGa1�xAs

with x> 0.22, or GaAs under pressures> 2 GPa, Si becomes

a DX center (Fig. 6). In this configuration, it accepts an elec-

tron and is negatively charged. When exposed to light, a pho-

ton of energy Eopt can excite the electron into the CB,

neutralizing the defect. The Si atom relaxes to its substitu-

tional site and acts as shallow donor. In order to revert to the

DX ground state, the defect must capture an electron and sur-

mount a barrier (�0.2 eV). At low temperatures (<180 K),

this barrier is large enough to cause the Si atom to remain in

its metastable donor state for hours or days. This leads to

persistent photoconductivity (PPC), an increase in free-

carrier density that persists even after the light source is

turned off.80

DFT calculations by Chadi and Chang81 indicated that,

in its DX configuration, the Si atom occupies an interstitial

site neighboring three As atoms (Fig. 6). This model has

been tested by a range of experiments. Electrical characteri-

zation techniques such as Hall effect and DLTS have deter-

mined the thermodynamic energy and capture barrier as a

function of x.79 Positron annihilation spectroscopy showed

that the DX center is vacancy-like, consistent with the open

FIG. 5. PLE spectra for ZnO:N at 10 K and 300 K. The smooth red lines are

fits according to Eq. (10).

FIG. 6. Configuration coordinate diagram for the DX center in AlGaAs. In

the DX configuration (left), the Si atom is displaced from its substitutional

site. In the shallow-donor configuration (right), the Si atom occupies the sub-

stitutional site. The red arrow depicts a barrier for transforming from the

shallow-donor to the DX configuration.
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volume created by the displacement of the Si atom.82 IR

spectroscopy on GaAs:Si under pressure showed that the Si

local vibrational mode of the DX state is 2% lower than the

shallow-donor state, in agreement with calculations.83

Beyond AlxGa1�xAs, DX centers have been discovered

in various III–V and II–VI semiconductors.79,84 The unique

phenomenon of PPC led researchers to propose that DX cen-

ters could be used for holographic memory, where data are

optically written and read throughout the bulk of a crystal.85

A major practical problem is that PPC only occurs at low

temperatures. Recently, room-temperature PPC was discov-

ered in SrTiO3 crystals and attributed to a DX-like defect.86

When exposed to photons >2.9 eV, the free-electron density

increases by over two orders of magnitude, with negligible

decay at room temperature.

C. Carbon in GaN

Bulk and epitaxially grown GaN layers often exhibit

yellow luminescence (YL), peaking at 2.1–2.2 eV. The origin

of the YL has been discussed for a long time. In the 1980s,

Ogino and Aoki87 suggested that YL is related to the pres-

ence of carbon impurities in the GaN. However, at the time,

it was believed that simple substitutional carbon is a shallow

acceptor with a defect level �0.2 eV from the valence band.

This would give rise to photoluminescence peaking at about

3.3 eV. Thus, it appeared that substitutional carbon cannot

cause YL.

As in the case of ZnO:NO, the problem was solved by

accurate first principles calculations based on hybrid density

functionals.88 Calculations show the (0/–) level occurs at

0.9–1.0 eV above the VBM.88,89 Combined with a Franck-

Condon shift dFC ¼ 0:46 eV,88 this yields luminescence peak-

ing at �2.1 eV, explaining the experimental result. The actual

1D cc diagram for the luminescence process is shown in Fig.

7. In Fig. 8, we show the comparison of the calculated55 and

measured90 luminescence lineshapes. For a more meaningful

comparison, the ZPL of the theoretical curve was shifted

upward by 0.08 eV. It is clear that the calculations agree

very well with experiments. Moreover, the theoretical Huang-

Rhys factors (Sg ¼ 11) and effective phonon frequencies

(�hx0 ¼ 42 meV) also agree well with experimental results

reported in Ref. 87 (Sg ¼ 12:861:8, �hx0 ¼ 4165 meV) and

Ref. 91 (Sg ¼ 8:4, �hx0 ¼ 55 meV).

In Ref. 67, calculations of nonradiative capture of a hole

by a negatively charged substitutional carbon were reported.

The results were compared to capture coefficients deter-

mined from thermal quenching of YL, measured in the tem-

perature range 500–700 K. When the decrease of the band

gap of GaN at these elevated temperatures is taken into

account, the theoretical capture coefficient Cp ¼ 3:1� 10�7

cm3 s�1 agrees very well with experimental results91 Cp ¼
ð3� 6Þ � 10�7 cm3 s�1. Note that the calculated capture

coefficient depends very sensitively on the energy difference

DE (cf. Fig. 3). Getting the order-of-magnitude right is al-

ready a challenge for such calculations. Keeping this in

mind, the agreement between experiment and theory

reported in Ref. 67 is indeed excellent; it confirms the accu-

racy of the 1D cc diagram pertaining to substitutional carbon

in GaN calculated using hybrid functionals.

V. CONCLUSIONS

In conclusion, the combination of theory and experiment

yields detailed insights into the properties of defects in semi-

conductors that could not be obtained from computations or

from measurements alone. With the advent of more accurate

density functional methods, such as hybrid functionals, and

other advances, such as supercell-size corrections, theoretical

and computational work has become increasingly important to

interpret experimental results. Configuration coordinate dia-

grams, derived from theory and experiment, provide crucial

information about deep-level defects. The examples in Sec. IV

have illustrated that important conclusions can be drawn from

such a combined theory/computation/experiment approach.

In spite of (or maybe because of) these successes, this

remains an active area of new developments. On the side of

theory, more accurate but still computationally tractable

ways to incorporate finite-temperature effects need to be

developed. More efficient methods also need to be developed

for treating electron-phonon interactions in cases where one

FIG. 7. Calculated configuration coordinate diagram of substitutional carbon

in GaN. The vertical solid arrow illustrates the optical transition that gives

rise to yellow luminescence. DE ¼ 0:9 eV is the ionization energy of the

carbon acceptor.88 For the quantitative definition of the configuration coordi-

nate Q, see Ref. 55.

FIG. 8. Calculated (Ref. 55) and measured (Ref. 90) luminescence line-

shapes for GaN:CN.
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needs to go beyond the 1D configuration coordinate model.

The expanding interest in two-dimensional materials has

focused attention on the development and implementation of

functionals that correctly treat van der Waals interactions.92

On the experimental side, scanning-probe and electron mi-

croscopy provide images which, when combined with first-

principles calculations, yield information at the atomic scale.

Given the crucial impact of defects and impurities on

the properties and technological applications of materials,

the fruitful interaction of theory and experiment will con-

tinue to gain in importance and produce essential results.
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APPENDIX: VALIDITY OF THE 1D CONFIGURATION
COORDINATE DIAGRAM

In Sections III and IV, we used one dimensional cc dia-

grams to analyze absorption, luminescence, and nonradiative

capture at defects. The question might arise: is this not overly

simplistic? The 1D cc diagram corresponds to one phonon

mode of a particular frequency. Defects significantly perturb

the underlying crystal lattice, and therefore one expects a

complicated spectrum of quasi-local modes. How can we rec-

oncile this expectation with the success of 1D cc diagrams?

1D cc diagrams are certainly not universally valid.49,51

However, the validity of the 1D approximation can be dem-

onstrated for certain classes of problems. Let us again con-

sider luminescence at a defect. When we go beyond the cc

representation, we have to include the coupling to all the

possible modes. The easiest way to achieve this is by intro-

ducing the so-called spectral density of electron-phonon cou-

pling SðeÞ64

SðeÞ ¼
X

k

Skdðe� ekÞ: (A1)

Here, the sum runs over all phonon modes k with frequencies

xk, and ek ¼ �hxk. Sk is a partial Huang-Rhys factor, which,

in analogy with the total Huang-Rhys factor S introduced in

Eq. (3), shows the average number of phonons of type k
emitted during the optical transition. The total Huang-Rhys

factor is

S ¼
ð�hxmax

0

SðeÞde; (A2)

xmax being the largest phonon frequency in the system. Let

us consider a model defect, for which we choose the spectral

density SðeÞ shown in Fig. 9. SðeÞ has the following features.

(i) Coupling to lower-energy modes in the energy range

0–55 meV; there is broad asymmetric maximum at 35 meV.

(ii) Coupling to higher-energy modes in the energy range

65–100 meV with a well-pronounced symmetric peak at

80 meV. (iii) SðeÞ ¼ 0 in the energy range 55–65 meV. In

our hypothetical example, this happens because there are no

phonons with these energies, representing a gap between

acoustical and optical modes, and the defect itself does not

introduce additional modes in this gap. The total Huang-

Rhys factor is S ¼ 15, a typical value for deep acceptors in

wide-band-gap semiconductors such as ZnO and GaN.55,91

From the knowledge of the spectral density SðeÞ, one can

define an average phonon energy

e0 ¼
1

S

ð�hxmax

0

S eð Þede; (A3)

which in our examples turns out to be 60 meV (Fig. 9). Note

that, per our assumption, there are no actual phonons with

this particular energy.

The luminescence lineshape LðeÞ is uniquely deter-

mined by the spectral density SðeÞ and the zero-phonon-line

energy EZPL ¼ Etherm. One possible way to determine LðeÞ
from the knowledge of SðeÞ and EZPL is provided by means

of the so-called generating function.64 We do not provide

explicit formulas here but refer the reader to the literature,

e.g., Eqs. (8)–(10) in Ref. 59. The only other parameter that

enters into the calculation is the full width at half-maximum

of the zero-phonon line, c. In all subsequent examples, we

choose c ¼ 2 meV. c represents the inhomogeneous broad-

ening that is present also for T¼ 0 K.

To calculate the luminescence lineshape within a 1D

model, one essentially needs only three parameters: EZPL, S,

and the average phonon energy e0, defined in Eq. (A3).

The analytical form of the lineshape is given by [cf. Eqs.

(6) and (7)]

L eð Þ ¼
X

n

e�S Sn

n!
gr EZPL � ne0 � eð Þ; (A4)

where grðxÞ is a Gaussian function with a smearing parame-

ter r, which represents the replacement of all phonon modes

with just one effective mode.

Before providing the results for our defect (let us call it

“defect C”) with S ¼ 15, it is instructive to study two other

cases, where the form of the spectral density SðeÞ is the

same as in Fig. 9, but the function SðeÞ is scaled, so that for

“defect A” S ¼ 0:3 (weak electron-phonon coupling),

whereas for “defect B” S ¼ 5 (intermediate electron-

phonon coupling). The calculated luminescence lineshape

for “defect A” is shown in Fig. 10(a). We chose EZPL ¼ 2:0
eV. In this case, most of the luminescence is in the ZPL

(red arrow). The fraction of light in the ZPL is given by

e�S � 0:75. Thus, only 0.25 of luminescence intensity is in

the phonon sideband. By analyzing this sideband [inset in

Fig. 10(a)], we can clearly identify the phonon replicas that

correspond to the peaks in the spectral density at 35 meV

and 80 meV. First-order peaks are pronounced, and second-
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order peaks can be identified, but higher-order peaks can no

longer be distinguished in the spectrum. In the inset of Fig.

10(a), we also show a fit (dashed line) of the luminescence

lineshape to a 1D formula given in Eq. (A4). The free pa-

rameter we have in the fit is the Gaussian smearing parame-

ter r, and we choose r ¼ 5 meV to get the best overall fit.

Clearly, 1D model is not very good. Most importantly, it

does not reproduce the position of phonon replicas. Also, it

cannot reproduce the width of these replicas and the ZPL at

the same time no matter what r one chooses. For example,

choosing a smaller r would yield a better agreement for the

ZPL, but a worse one for the phonon replicas.

The lineshape for “defect B” is shown in Fig. 10(b). In

this case, only e�5 ¼ 0:007 of luminescence intensity is in

the ZPL, while the majority is in the phonon sideband. While

close to the ZPL, we can still identify features that originate

from phonons of various frequencies, these features become

broader, and the lineshape smoother, further from the ZPL

(smaller energies). In this case, the 1D model performs bet-

ter. While it is still not able to reproduce the fine structure of

the lineshape, it provides a fair approximation to the overall

lineshape.

When the electron-phonon coupling increases even fur-

ther, as is the case for our “defect C” with S ¼ 15, the lumi-

nescence lineshape becomes a smooth function, where one

can no longer identify contributions from different phonon

modes, as shown in Fig. 10(c). Furthermore, the luminescence

intensity of the ZPL is practically 0. It turns out that in this

case, i.e., when S� 1, one does not really need to know the

fine structure of the spectral density SðeÞ, and a 1D model is a

very good approximation. The resulting lineshape is shown in

Fig. 10(c). We observe that the centers-of-mass of the two

curves are identical, both equal to EZPL � Se0 ¼ 1:10 eV,

which is exactly the classical Franck-Condon transition

energy Eem corresponding to emission. However, the line-

shape pertaining to the full calculation is slightly more asym-

metric. We conclude that while the 1D model does not exactly
reproduce the full calculation, it clearly provides a highly

accurate description of the luminescence lineshape, and thus

the phonon physics, for defects with strong electron-phonon

coupling (S� 1). In our example, we assumed that phonon

frequencies in the ground and the excited states were equal.

This is not a restriction; the usefulness of the 1D approxima-

tion can be similarly shown with explicit calculations55 in

case the frequencies are different.

Our example has demonstrated why the 1D cc diagram

picture is so useful, since many defects exhibit strong

electron-phonon coupling. Even for cases with weak or inter-

mediate electron-phonon coupling, the 1D picture can still

be valuable as an approximation to the overall lineshape,

even though the fine structure cannot be captured.
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